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Phase transition in an asymmetric generalization of the zero-temperature Glauber model
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An asymmetric generalization of the zero-temperature Glauber model on a lattice is introduced. The dynam-
ics of the particle-density and especially the large-time behavior of the system is studied. It is shown that the
system exhibits two kinds of phase transitions, a static one and a dynamic one.

DOI: 10.1103/PhysRevE.63.042102 PACS nuni)er82.40.Bj, 02.50.Ga, 05.40a

[. INTRODUCTION librium with a heat bath at temperatufe A spin is flipped
with the rate u:=1—tanhJ/KT, if the spin of both of its
In recent years, reaction—diffusion systems have beeneighboring sites are the same as itself, and is flipped with
studied by many people. As mean-field techniques, genethe rate\ :=1+tanhJ/KT if the spin of both of its neighbor-
ally, do not give correct results for low-dimensional systemsjng sites are opposite to it. At domain boundaries, the spins
people are motivated to study exactly solvable stochastiare flipped with unit rate. So the interactions can be written
models in low dimensions. Moreover, solving one-as
dimensional systems should in principle be easier. Exact re-

sults for some models on a one—dimensional lattice have AAA—ADDA and MO—0AD u,
been obtained, for example, in Ref$—11]. Different meth-
ods have been used to study these models, including analyti- ADA—AAA and QAD—000 A,

cal and asymptotic methods, mean-field methods, and large-
scale numerical methods.

Some interesting problems in nonequilibrium systems are . :
nonequilibrium phase transitions described by phenomend’-\’here spin up and spin down are denotedtognd Q One

logical rate equations, and the way the system relaxes to i%an interpret an up spin as a particle, and a doyvn Spin as a

steady state. Kinetic generalizations of the Ising model, fo .oIe. AL zero temperatl_Jre, th_e Glauber dynamics is effec-

example, the Glauber model or the Kawasaki model, ar(I."Ve'y a two-site interactiof21]:

such phenomenological models and have been studied exten- AA

sively [12—17. Combination of the Glauber and the Ka- AD 1

wasaki dynamics has been also considéfei-20. 1 00, (1)
In this paper, we want to study an asymmetric generali-

zation of the zero-temperature Glauber model on a lattice AA

with boundaries. There are also sour@assinks of particles

at the end points of the lattice. We study the dynamics of the 0A—1 o0, 2

particle density, and especially the large-time behavior of the

system. In the thermodynamic limit, the system shows tWQ,hare g the above processes occur with the same rate.
kinds of phase transitions. One of these is a static phase One can consider the following interactions, as an asym-

transition, the other a dynamic one. The static phase transf,eyric generalization of the zero-temperature Glauber model.
tion is controlled by the reaction rates, and is a discontinuous

change of the behavior of the derivative of the stationary AA U
particle density at the end points, with respect to the reaction AD—1 o 3)
rates. The dynamic phase transition is controlled by the in- v
jection and extraction rates of the particles at the end points,
and is a discontinuous change of the relaxation time towards AA v
the stationary configuration. 0A—{ 00 (4)

AAD=ADD and MMA=0AA 1,

Il. ASYMMETRIC GLAUBER MODEL AT ZERO

TEMPERATURE If u#v, the above system has left-right asymmetry. The

above system on an infinite lattice has been investigated in
In the ordinary Glauber model, the interaction is betweerRef.[22], where itsn-point functions, its equilibrium states,
three neighboring sites. Spin flip brings the system to equiand its relaxation towards these states are studied. It can be
easily shown that the time evolution equation for the average
densities of the system with the above interactions are the
*Email address: mamwad@iasbs.ac.ir same as that of a system with the following interactions,
TEmail address: mohamadi@theory.ipm.ac.ir where diffusion is also present:
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0A A Ex;=—(a+a’ +v)x;+uvXy,
- 11
AD— AA Uu—A (5) Ex,.=—(b+b’"+u)x +ux__q, D
00 v—A,

where the eigenvalue and eigenvector have been denoted
with E andx, respectively. The solution to these equations is

AD A’
k k
A Xy= az;+ Bz5, (12
oA_> AA v A (6) k 1 2
00 u—A'. wherez;’s satisfy
u
Consider a lattice withL sites and an asymmetric zero- E=—(u+v)+vz+ -, (13
temperature Glauber dynamics as the interaction. The rates z
of injection and extraction of particles in the first sitaal and
site) area anda’ (b andb’), respectively. The time evolu-
tion equations for the average densities are then v(azi+ Bz2)— (E+a+a’ +v)(az,+ Bz,)=0,
(== (u+v){n+u(n_ 1) +o(n.1) for k#1L, u(azy *+Bzs ) —(E+b+b’+u)(azi+ Bz5)=0.
(14)

ny)=a—(a+a’ +v){ny)+ov(n,), (7 . -
(ny) {ny)+u(nz) To have nonzero solutions fot, these last two equations

(h,_)=b—(b+b’+u)(n,_)+u(n,__1>. should be dependent, the criterion of which is
L+1, L _ L+1, oL _

First, let us calculate the profile of average densities at Iarge(u’Lzl&’l)(U22 +2300) = (Ut z68)(vzy " " +216b) (105’)

times. At large times, the system goes to its stationary state,

and the time derivatives of the left—hand sides vanish. Ongnere Eq.(13) has been used to elimina® and sa:=a

can see then that the solution to the above system is +a’—u and db:=b+b’ —v. Defining
ul K
1%
(N(®@))=a+p —) : ) z.::z.\ﬁ
v i i u1
Putting this in Eq.(7), one can easily findv and 8. In the s
thermodynamic limit [ —<), the solution becomes A::_a (16)
Vuo
(o) a_ ba' —ab’ (u)""—
Ny(o0))= - - ,
: ata’  (ata’)(b+b +u—u) v .

u>v,
Eq. (15) is simplified to
r At k=1
()= —— ab’—a’b (E) , 7+ (14 AZ)(1+BZ)— 2 {1+ AZ ) (1+BZ Y
b+b" " (b+b')(a+a' +v—u)'\v
=0. (17)
usuv. ©) The eigenvalud satisfies
It is seen that the density profile is flat at the left erd ( E=—(u+v)+\/ﬁ(Z+Z‘1) (18)

<L) for u>v and its value is independent of the reaction
rates. But ag exceedsy, the density profile acquires a finite Two obvious solutions of the E4L7) areZ= +1. But these
slope, proportional to Infv). This is the static phase transi- generally don't correspond to eigenvalues and eigenvectors.
tion previously mentioned. In fact for these solutionsZ andZ~* are the same, so that
Now return to the dynamics of the system. Let us writegq, (12) should be modified to
the homogeneous part of E(f) as
Xie=(a+BR) (£ 1)K, (19

.k =N Ny,
Ny =hy (10) . » .
and it is not difficult to see that these do not fulfill the bound-

and find the eigenvalues and eigenvectors of the opehator ary conditions unlese=g=0. Equation(18) can be written
One finds as a polynomial equation of order 2¢ 1), and hence has

2L more roots in addition t&=*+1. For these R roots, if
Exy=—(u+v)XtuXe_1+ovXeiq, kK#F1L, Zis a rootZ~ ! is another root, and these two correspond to
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one eigenvalue and one eigenvector. SolthelL matrix h
does havd. eigenvalues and eigenvectors.

For A=B=0, Eq.(17) is very simple and its nontrivial
solutions are

1=s=s=<L,

Z(S):eiTrS/(L+1), (20)
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these areZ=*=1. The remaining R points correspond ta
eigenvalues and eigenvectors farOne concludes that for
|Al,|B|<1,

7=(u+v—2uvcosd) 1, (30)

for some#. Especially, alL—o, the relaxation time is the

and their inverses. All of these are phases and the real part game as the relaxation time fAr=B=0, that is the same as

the corresponding eigenvalues satisfy

RE(E)<—(u+v)+2 uvcos(LTWl)<o. 21)

Eq. (23).

If, for example,|A|>1, then the total phase change of
(1+AZ) is no longer zero. It is 2. One may then lose two
of the roots of the unit circle. Note that the mere fact that
A@p[F(Z)]=—2mL does not mean that there are judt 2

The maximum of the real part of the eigenvalues determineg ions of Eq.(17) on the unit circle, since the phase of
the relaxation time toward the stationary average-densny;(z) need not be monotonic. To find valuesAandB. for

profile. That is

T -1

T=|utv—2 UUCOE{m (22
In the limit L— o, this is simplified to

r=(u+v—2yuv) "L (23)

The general solution to Eq7) is seen to be

2
<nk(t)>=§ mexr{E(s)t](nk(O»
u\&=m2- [ msk\ [ @sm

x| — sin| 51 sin 1) (29

Now consider the general case. Equatidf) can be written
as
G(2)=F(2)-F(z™Y=0, (25)
where
F(Z2):=2"t"D(1+AZ)(1+B2). (26)

If Z is a phase, it satisfies EL7) providedF(Z) is real.
Consider the phase &f(Z) for unimodularZ. We have

#F(2)]=—(L+1)d(2)+ $(1+AZ)+ $(1+B2Z),
(27)

them the number of the solutions of E@7) on the unit
circle is 2L or 2(L—1), consider the functio(Z) at the
pointsZ==1. IncreasindA| or |B|, two of the roots on the
unit circle tend to 1 or—1, and then move out of the unit
circle and on the real line. At the point that this occurs, either
G'(1) or G'(—1) become zero, as there will be multiple
roots at+ 1. So the criterion for each changesing 2 roots
of the unit circlg is that eitherG’(1) or G’'(—1) become
zero. The curves in thé&B plane, corresponding to these
changes are

L(1+A)(1+B)+1-AB=0, G'(1)=0, (31

and

L(1—A)(1-B)+1—-AB=0, G'(-1)=0. (32

These curves divide the plane into six regions:

() all of the solutions are phases.

(II) 2L phase solutions, 2 real negative solutions.

(Il 2(L—1) phase solutions, 4 real negative solutions.

(IV) 2L phase solutions, 2 real positive solutions.

(V) 2(L—1) phase solutions, 4 real positive solutions.

(VI) 2(L—1) phase solutions, 2 real negative solutions, 2
real positive solutions.

In the above, by real solutions is meant real solutions besides
the trivial solutions=1. Note, however, that not all of this
plane is physical. The physical region is that part of the
plane, which corresponds to non-negative values for the in-

where ¢ denotes the phase of its argument. As the phase géction and extraction rates. Returning to the definitiong of

Zis changed from 0 to &, the change of the phase B{Zz)
is

AP[F(Z)]=—2m(L+1)+Ap(1+AZ)+AH(1+BZ).
(28)

For |A],|B|]<1, the phase changes of {;AZ) and (1
+BZ) are zero, aZ moves on the whole unit circle. So,

A¢[F(Z)]=—-2m(L+1), for |A],|B]<1. (29
But this means that the phase B{Z) will be an integer

multiple of 7r for at least 2 +1) points on the unit circle.

andB, Eqg. (16), it is seen that

u
Amin= — ;r

(33
v
Bmin=— u
The point Anin,Bmin) itself is on the curve
AminBmin=1. (34)

So all of the solutions of Eq17) are still phases, although One can see that, unless-v, part of the physical region is
they may be not uniformly spaced on the unit circle. Two ofin the region 1V, where two of the solutions of E@Q7) are
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real positive(and of course the inverse of each ojhdrhis Z=-B,-B" % |B|>1. (39
makes the maximum of the real part Bflarger than—(u
+v)+24/uv, and correspondingly, the relaxation time larger Then, if for exampleA is negative and less than1 and

than Eq.(23). o . A<B, the maximum real part oE is —(u+v)—uv(A
In the thermOdynamlc ||m|L—>OO, the regions of thé\B +A*1), and the relaxation time of the System is

plane are greatly simplified. In fact the curves corresponding

to G'(=1)=0 become r=[u+v+Juo(A+A"Y] L, (39)
A=-1, orB=-1, G'(1)=0, (35 L o N
which is greater than E@23). This is a phase transition that
and occurs atA=—1. For A>—1, the relaxation time is con-
stant, Eq(23). ForA<—1, itis A dependent. The minimum
A=1, orB=1, G'(-1)=0. (38 of Ais —ulv, for which one of the eigenvalues bfbe-

comes zero, and the relaxation time becomes infinite. The
same effect is seen fd@<—1. As mentioned before, far
=v (the ordinary zero-temperature Glauber model part
Z=—-A,-A"1 |AI>1 (37)  of the region IV is in the physical region, and this transition
does not occur. The phase transition discussed here is the
and dynamical phase transition mentioned before.

In the case where eith@f| or |B| are greater than 1, the real
roots of Eq.(17) are simply
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