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Phase transition in an asymmetric generalization of the zero-temperature Glauber model
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An asymmetric generalization of the zero-temperature Glauber model on a lattice is introduced. The dynam-
ics of the particle-density and especially the large-time behavior of the system is studied. It is shown that the
system exhibits two kinds of phase transitions, a static one and a dynamic one.
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I. INTRODUCTION

In recent years, reaction–diffusion systems have b
studied by many people. As mean-field techniques, ge
ally, do not give correct results for low-dimensional system
people are motivated to study exactly solvable stocha
models in low dimensions. Moreover, solving on
dimensional systems should in principle be easier. Exact
sults for some models on a one–dimensional lattice h
been obtained, for example, in Refs.@1–11#. Different meth-
ods have been used to study these models, including ana
cal and asymptotic methods, mean-field methods, and la
scale numerical methods.

Some interesting problems in nonequilibrium systems
nonequilibrium phase transitions described by phenome
logical rate equations, and the way the system relaxes t
steady state. Kinetic generalizations of the Ising model,
example, the Glauber model or the Kawasaki model,
such phenomenological models and have been studied e
sively @12–17#. Combination of the Glauber and the Ka
wasaki dynamics has been also considered@18–20#.

In this paper, we want to study an asymmetric gener
zation of the zero-temperature Glauber model on a lat
with boundaries. There are also sources~or sinks! of particles
at the end points of the lattice. We study the dynamics of
particle density, and especially the large-time behavior of
system. In the thermodynamic limit, the system shows t
kinds of phase transitions. One of these is a static ph
transition, the other a dynamic one. The static phase tra
tion is controlled by the reaction rates, and is a discontinu
change of the behavior of the derivative of the station
particle density at the end points, with respect to the reac
rates. The dynamic phase transition is controlled by the
jection and extraction rates of the particles at the end poi
and is a discontinuous change of the relaxation time towa
the stationary configuration.

II. ASYMMETRIC GLAUBER MODEL AT ZERO
TEMPERATURE

In the ordinary Glauber model, the interaction is betwe
three neighboring sites. Spin flip brings the system to eq
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librium with a heat bath at temperatureT. A spin is flipped
with the ratemª12tanhJ/kT, if the spin of both of its
neighboring sites are the same as itself, and is flipped w
the ratelª11tanhJ/kT if the spin of both of its neighbor-
ing sites are opposite to it. At domain boundaries, the sp
are flipped with unit rate. So the interactions can be writ
as

AAA→A0”0”A and 0”0”0”→0”A0” m,

A0”A→AAA and 0”A0”→0”0”0” l,

AA0”
A0”0” and 0”0”A
0”AA 1,

where spin up and spin down are denoted byA and 0” . One
can interpret an up spin as a particle, and a down spin
hole. At zero temperature, the Glauber dynamics is eff
tively a two-site interaction@21#:

A0”→H AA

0”0” , ~1!

0”A→H AA

0”0” , ~2!

where all the above processes occur with the same rate
One can consider the following interactions, as an asy

metric generalization of the zero-temperature Glauber mo

A0”→H AA u

0”0” v, ~3!

0”A→H AA v

0”0” u. ~4!

If uÞv, the above system has left-right asymmetry. T
above system on an infinite lattice has been investigate
Ref. @22#, where itsn-point functions, its equilibrium states
and its relaxation towards these states are studied. It ca
easily shown that the time evolution equation for the aver
densities of the system with the above interactions are
same as that of a system with the following interactio
where diffusion is also present:
©2001 The American Physical Society02-1
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A0”→H 0”A L

AA u2L

0”0” v2L,
~5!

0”A→H A0” L8

AA v2L8

0”0” u2L8.
~6!

Consider a lattice withL sites and an asymmetric zero
temperature Glauber dynamics as the interaction. The r
of injection and extraction of particles in the first site~final
site! area anda8 (b andb8), respectively. The time evolu
tion equations for the average densities are then

^ṅk&52~u1v !^nk&1u^nk21&1v^nk11& for kÞ1,L,

^ṅ1&5a2~a1a81v !^n1&1v^n2&, ~7!

^ṅL&5b2~b1b81u!^nL&1u^nL21&.

First, let us calculate the profile of average densities at la
times. At large times, the system goes to its stationary st
and the time derivatives of the left–hand sides vanish. O
can see then that the solution to the above system is

^nk~`!&5a1bS u

v D k

. ~8!

Putting this in Eq.~7!, one can easily finda and b. In the
thermodynamic limit (L→`), the solution becomes

^nk~`!&5
a

a1a8
1

ba82ab8

~a1a8!~b1b81u2v !
S u

v D k2L

,

u.v,

^nk~`!&5
b

b1b8
1

ab82a8b

~b1b8!~a1a81v2u!
S u

v D k21

,

u,v. ~9!

It is seen that the density profile is flat at the left endk
!L) for u.v and its value is independent of the reacti
rates. But asv exceedsu, the density profile acquires a finit
slope, proportional to ln(u/v). This is the static phase trans
tion previously mentioned.

Now return to the dynamics of the system. Let us wr
the homogeneous part of Eq.~7! as

^ṅk&5hk
l ^nl&, ~10!

and find the eigenvalues and eigenvectors of the operatoh.
One finds

Exk52~u1v !xk1uxk211vxk11 , kÞ1,L,
04210
es
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e

Ex152~a1a81v !x11vx2 ,
~11!

ExL52~b1b81u!xL1uxL21 ,

where the eigenvalue and eigenvector have been den
with E andx, respectively. The solution to these equations

xk5az1
k1bz2

k , ~12!

wherezi ’s satisfy

E52~u1v !1vz1
u

z
, ~13!

and

v~az1
21bz2

2!2~E1a1a81v !~az11bz2!50,

u~az1
L211bz2

L21!2~E1b1b81u!~az1
L1bz2

L!50.
~14!

To have nonzero solutions forx, these last two equation
should be dependent, the criterion of which is

~u1z1da!~vz2
L111z2

Ldb!2~u1z2da!~vz1
L111z1

Ldb!50,
~15!

where Eq.~13! has been used to eliminateE, and daªa
1a82u anddbªb1b82v. Defining

ZiªziAv
u

,

Aª
da

Auv
, ~16!

Bª
db

Auv
,

Eq. ~15! is simplified to

Z2(L11)~11AZ!~11BZ!2ZL11~11AZ21!~11BZ21!

50. ~17!

The eigenvalueE satisfies

E52~u1v !1Auv~Z1Z21!. ~18!

Two obvious solutions of the Eq.~17! areZ561. But these
generally don’t correspond to eigenvalues and eigenvect
In fact for these solutions,Z and Z21 are the same, so tha
Eq. ~12! should be modified to

xk5~a1bk!~61!k, ~19!

and it is not difficult to see that these do not fulfill the boun
ary conditions unlessa5b50. Equation~18! can be written
as a polynomial equation of order 2(L11), and hence has
2L more roots in addition toZ561. For these 2L roots, if
Z is a rootZ21 is another root, and these two correspond
2-2
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one eigenvalue and one eigenvector. So theL3L matrix h
does haveL eigenvalues and eigenvectors.

For A5B50, Eq. ~17! is very simple and its nontrivia
solutions are

Z(s)5eips/(L11), 1<s<L, ~20!

and their inverses. All of these are phases and the real pa
the corresponding eigenvalues satisfy

Re~E!<2~u1v !12AuvcosS p

L11D,0. ~21!

The maximum of the real part of the eigenvalues determi
the relaxation time toward the stationary average-den
profile. That is

t5Fu1v22AuvcosS p

L11D G21

. ~22!

In the limit L→`, this is simplified to

t5~u1v22Auv !21. ~23!

The general solution to Eq.~7! is seen to be

^nk~ t !&5(
s,m

2

L11
exp@E(s)t#^nk~0!&

3S u

v D (k2m)/2

sinS psk

L11D sinS psm

L11D . ~24!

Now consider the general case. Equation~17! can be written
as

G~Z!ªF~Z!2F~Z21!50, ~25!

where

F~Z!ªZ2(L11)~11AZ!~11BZ!. ~26!

If Z is a phase, it satisfies Eq.~17! providedF(Z) is real.
Consider the phase ofF(Z) for unimodularZ. We have

f@F~z!#52~L11!f~Z!1f~11AZ!1f~11BZ!,
~27!

wheref denotes the phase of its argument. As the phas
Z is changed from 0 to 2p, the change of the phase ofF(z)
is

Df@F~Z!#522p~L11!1Df~11AZ!1Df~11BZ!.
~28!

For uAu,uBu,1, the phase changes of (11AZ) and (1
1BZ) are zero, asZ moves on the whole unit circle. So,

Df@F~Z!#522p~L11!, for uAu,uBu,1. ~29!

But this means that the phase ofF(Z) will be an integer
multiple of p for at least 2(L11) points on the unit circle.
So all of the solutions of Eq.~17! are still phases, althoug
they may be not uniformly spaced on the unit circle. Two
04210
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these areZ561. The remaining 2L points correspond toL
eigenvalues and eigenvectors forh. One concludes that fo
uAu,uBu,1,

t5~u1v22Auvcosu!21, ~30!

for someu. Especially, atL→`, the relaxation time is the
same as the relaxation time forA5B50, that is the same a
Eq. ~23!.

If, for example, uAu.1, then the total phase change
(11AZ) is no longer zero. It is 2p. One may then lose two
of the roots of the unit circle. Note that the mere fact th
Df@F(Z)#522pL does not mean that there are just 2L
solutions of Eq.~17! on the unit circle, since the phase o
F(Z) need not be monotonic. To find values ofA andB, for
them the number of the solutions of Eq.~17! on the unit
circle is 2L or 2(L21), consider the functionG(Z) at the
pointsZ561. IncreasinguAu or uBu, two of the roots on the
unit circle tend to 1 or21, and then move out of the un
circle and on the real line. At the point that this occurs, eith
G8(1) or G8(21) become zero, as there will be multip
roots at61. So the criterion for each change~losing 2 roots
of the unit circle! is that eitherG8(1) or G8(21) become
zero. The curves in theAB plane, corresponding to thes
changes are

L~11A!~11B!112AB50, G8~1!50, ~31!

and

L~12A!~12B!112AB50, G8~21!50. ~32!

These curves divide the plane into six regions:

~I! all of the solutions are phases.
~II ! 2L phase solutions, 2 real negative solutions.
~III ! 2(L21) phase solutions, 4 real negative solution
~IV ! 2L phase solutions, 2 real positive solutions.
~V! 2(L21) phase solutions, 4 real positive solutions.
~VI ! 2(L21) phase solutions, 2 real negative solutions

real positive solutions.

In the above, by real solutions is meant real solutions bes
the trivial solutions61. Note, however, that not all of this
plane is physical. The physical region is that part of t
plane, which corresponds to non-negative values for the
jection and extraction rates. Returning to the definitions oA
andB, Eq. ~16!, it is seen that

Amin52Au

v
,

~33!

Bmin52Av
u

.

The point (Amin ,Bmin) itself is on the curve

AminBmin51. ~34!

One can see that, unlessu5v, part of the physical region is
in the region IV, where two of the solutions of Eq.~17! are
2-3
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real positive~and of course the inverse of each other!. This
makes the maximum of the real part ofE larger than2(u
1v)12Auv, and correspondingly, the relaxation time larg
than Eq.~23!.

In the thermodynamic limitL→`, the regions of theAB
plane are greatly simplified. In fact the curves correspond
to G8(61)50 become

A521, or B521, G8~1!50, ~35!

and

A51, or B51, G8~21!50. ~36!

In the case where eitheruAu or uBu are greater than 1, the rea
roots of Eq.~17! are simply

Z52A,2A21, uAu.1 ~37!

and
n.

n,

ys

.

t.

04210
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Z52B,2B21, uBu.1. ~38!

Then, if for example,A is negative and less than21 and
A,B, the maximum real part ofE is 2(u1v)2Auv(A
1A21), and the relaxation time of the system is

t5@u1v1Auv~A1A21!#21, ~39!

which is greater than Eq.~23!. This is a phase transition tha
occurs atA521. For A.21, the relaxation time is con
stant, Eq.~23!. ForA,21, it is A dependent. The minimum
of A is 2Au/v, for which one of the eigenvalues ofh be-
comes zero, and the relaxation time becomes infinite.
same effect is seen forB,21. As mentioned before, foru
5v ~the ordinary zero-temperature Glauber model! no part
of the region IV is in the physical region, and this transitio
does not occur. The phase transition discussed here is
dynamical phase transition mentioned before.
.
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